Python 3

更新时间:

OpenAPI封装了云原生数据仓库AnalyticDB PostgreSQL版向量操作的DDL和DML,使您可以通过OpenAPI来管理向量数据。本文以SDK Python 3调用方式介绍如何通过API导入并查询向量数据。

前提条件

操作流程

  1. 安装SDK

  2. 初始化Client

  3. 初始化向量库

  4. 创建Namespace

  5. 创建Collection

  6. 上传向量数据

  7. 召回向量数据

安装SDK

当您没有指定SDK版本时,将自动安装最新版本的SDK,具体代码如下:

pip install alibabacloud_gpdb20160503
pip install alibabacloud_tea_openapi

当您需要安装指定版本的SDK时(本文alibabacloud_gpdb20160503以3.5.0版本为例,alibabacloud_tea_openapi以0.3.8版本为例),请执行如下命令:

pip install alibabacloud_gpdb20160503==3.5.0
pip install alibabacloud_tea_openapi==0.3.8

初始化Client

初始化访问OpenAPI的Client,调用示例如下:

from alibabacloud_tea_openapi import models as open_api_models
from alibabacloud_gpdb20160503.client import Client
import os

ALIBABA_CLOUD_ACCESS_KEY_ID = os.environ['ALIBABA_ACCESS_KEY_ID']
ALIBABA_CLOUD_ACCESS_KEY_SECRET = os.environ['ALIBABA_ACCESS_KEY_SECRET']
ADBPG_INSTANCE_ID = os.environ['ADBPG_INSTANCE_ID']
ADBPG_INSTANCE_REGION = os.environ['ADBPG_INSTANCE_REGION']

def get_client():
    config = open_api_models.Config(
        access_key_id=ALIBABA_CLOUD_ACCESS_KEY_ID,
        access_key_secret=ALIBABA_CLOUD_ACCESS_KEY_SECRET
    )
    config.region_id = ADBPG_INSTANCE_REGION
    return Client(config)

环境变量参数如下:

  • ALIBABA_ACCESS_KEY_ID:访问OpenAPI的Access Key ID。

  • ALIBABA_ACCESS_KEY_SECRET:访问OpenAPI的Secret Access Key。

  • ADBPG_INSTANCE_ID:实例的ID。

  • ADBPG_INSTANCE_REGION:实例所在的地域。

初始化向量库

在使用向量检索前,需初始化knowledgebase库以及全文检索相关功能。调用示例如下:

from alibabacloud_gpdb20160503 import models as gpdb_20160503_models

def init_vector_database(account, account_password):
    request = gpdb_20160503_models.InitVectorDatabaseRequest(
        region_id=ADBPG_INSTANCE_REGION,
        dbinstance_id=ADBPG_INSTANCE_ID,
        manager_account=account,
        manager_account_password=account_password
    )
    response = get_client().init_vector_database(request)
    print(f"init_vector_database response code: {response.status_code}, body:{response.body}")

if __name__ == '__main__':
    init_vector_database("testacc", "Test1234")

# output: body:
# {
#    "Message":"success",
#    "RequestId":"FC1E0318-E785-1F21-A33C-FE4B0301B608",
#    "Status":"success"
# }

参数说明,请参见InitVectorDatabase - 初始化向量数据库

创建Namespace

Namespace用于Schema隔离,在使用向量前,需至少创建一个Namespace或者使用public的Namespace。调用示例如下:

def create_namespace(account, account_password, namespace, namespace_password):
    request = gpdb_20160503_models.CreateNamespaceRequest(
        region_id=ADBPG_INSTANCE_REGION,
        dbinstance_id=ADBPG_INSTANCE_ID,
        manager_account=account,
        manager_account_password=account_password,
        namespace=namespace,
        namespace_password=namespace_password
    )
    response = get_client().create_namespace(request)
    print(f"create_namespace response code: {response.status_code}, body:{response.body}")

if __name__ == '__main__':
    create_namespace("testacc", "Test1234", "ns1", "Ns1password")

# output: body:
# {
#    "Message":"success",
#    "RequestId":"78356FC9-1920-1E09-BB7B-CCB6BD267124",
#    "Status":"success"
# }

参数说明,请参见CreateNamespace - 创建命名空间

创建完后,可以在实例的knowledgebase库查看对应的Schema。

SELECT schema_name FROM information_schema.schemata;

创建Collection

Collection用于存储向量数据,并使用Namespace隔离。调用示例如下:

def create_collection(account,
                      account_password,
                      namespace,
                      collection,
                      metadata: str = None,
                      full_text_retrieval_fields: str = None,
                      parser: str = None,
                      embedding_model: str = None,
                      dimension: int = None,
                      metrics: str = None,
                      hnsw_m: int = None,
                      pq_enable: int = None,
                      external_storage: int = None,):
    request = gpdb_20160503_models.CreateCollectionRequest(
        region_id=ADBPG_INSTANCE_REGION,
        dbinstance_id=ADBPG_INSTANCE_ID,
        manager_account=account,
        manager_account_password=account_password,
        namespace=namespace,
        collection=collection,
        metadata=metadata,
        full_text_retrieval_fields=full_text_retrieval_fields,
        parser=parser,
        dimension=dimension,
        metrics=metrics,
        hnsw_m=hnsw_m,
        pq_enable=pq_enable,
        external_storage=external_storage
    )
    response = get_client().create_collection(request)
    print(f"create_collection response code: {response.status_code}, body:{response.body}")

if __name__ == '__main__':
    metadata = '{"title":"text", "content": "text", "page":"int"}'
    full_text_retrieval_fields = "title,content"
    dimension = 8
    create_collection("testacc", "Test1234", "ns1", "dc1", 
                               metadata=metadata, full_text_retrieval_fields=full_text_retrieval_fields, 
                               dimension=dimension)

# output: body:
# {
#    "Message":"success",
#    "RequestId":"7BC35B66-5F49-1E79-A153-8D26576C4A3E",
#    "Status":"success"
# }

参数说明,请参见CreateCollection - 创建向量数据集

创建完后,可以在实例的knowledgebase库查看对应的Table。

SELECT tablename FROM pg_tables WHERE schemaname='vector_test';

上传向量数据

将准备好的Embedding向量数据上传到对应的Collection中。调用示例如下:

def upsert_collection_data(namespace, 
                           namespace_password, 
                           collection,
                           rows):
    request = gpdb_20160503_models.UpsertCollectionDataRequest(
        region_id=ADBPG_INSTANCE_REGION,
        dbinstance_id=ADBPG_INSTANCE_ID,
        namespace=namespace,
        namespace_password=namespace_password,
        collection=collection,
        rows=rows,
    )
    response = get_client().upsert_collection_data(request)
    print(f"upsert_collection_data response code: {response.status_code}, body:{response.body}")

if __name__ == '__main__':
    rows = []
    rows.append(gpdb_20160503_models.UpsertCollectionDataRequestRows(
        id="0CB55798-ECF5-4064-B81E-FE35B19E01A6",
        metadata={
            "page": 1,
            "content": "测试内容",
            "title": "测试文档"
        },
        vector=[0.2894745251078251, 0.5364747050266715, 0.14858841010401188, 0.42140750105351877,
                0.5780346820809248, 0.1145475372279496, 0.04329004329004329, 0.43246796493549741]
    ))
    upsert_collection_data("ns1", "Ns1password", "dc1", rows)

# output: body:
# {
#    "Message":"success",
#    "RequestId":"8FEE5D1E-ECE8-1F2F-A17F-48039125CDC3",
#    "Status":"success"
# }

参数说明,请参见UpsertCollectionData - 上传向量数据

上传完成,可以在实例的knowledgebase库查看数据。

SELECT * FROM vector_test.document;

召回向量数据

准备需要召回的查询向量或全文检索字段,执行查询接口。调用示例如下:

from typing import List

def query_collection_data(namespace, 
                          namespace_password, 
                          collection, 
                          top_k,
                          content: str = None,
                          filter_str: str = None,
                          include_values: bool = None,
                          metrics: str = None,
                          vector: List[float] = None):
    request = gpdb_20160503_models.QueryCollectionDataRequest(
        region_id=ADBPG_INSTANCE_REGION,
        dbinstance_id=ADBPG_INSTANCE_ID,
        namespace=namespace,
        namespace_password=namespace_password,
        collection=collection,
        top_k=top_k,
        content=content,
        filter=filter_str,
        include_values=include_values,
        metrics=metrics,
        vector=vector,
    )
    response = get_client().query_collection_data(request)
    print(f"query_collection_data response code: {response.status_code}, body:{response.body}")

if __name__ == '__main__':
    content = "test query"
    vector = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
    query_collection_data("ns1", "Ns1password", "dc1", 5, content=content, vector=vector)

# output:
# query_collection_data response code: 200, body:{'Matches': {'match': [{'Id': '0CB55798-ECF5-4064-B81E-FE35B19E01A6', 'Metadata': {'source': 1, 'page': '1', 'title': '测试文档', 'content': '测试内容'}, 'Score': 0.7208109110736349, 'Values': {'value': [0.28947452, 0.5364747, 0.1485884, 0.4214075, 0.5780347, 0.114547536, 0.043290045, 0.7]}}]}, 'RequestId': '709E2C82-FE25-1722-9DBB-00AD0F85ABBB', 'Status': 'success'}

参数说明,请参见QueryCollectionData - 召回向量数据